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Abstract. How many people can hide in a given terrain, without any
two of them seeing each other? We are interested in finding the precise
number and an optimal placement of people to be hidden, given a terrain
with n vertices. In this paper, we show that this is not at all easy: The
problem of placing a maximum number of hiding people is almost as
hard to approximate as the Maximum Clique problem, i.e., it cannot be
approximated by any polynomial-time algorithm with an approximation
ratio of nε for some ε > 0, unless P = NP . This is already true for a
simple polygon with holes (instead of a terrain). If we do not allow holes
in the polygon, we show that there is a constant ε > 0 such that the
problem cannot be approximated with an approximation ratio of 1 + ε.

1 Introduction and Problem Definition

While many of the traditional art gallery problems such as Vertex Guard
and Point Guard deal with the problem of guarding a given polygon with
a minimum number of guards, the problem of hiding a maximum number of
objects from each other in a given polygon is intellectually appealing as well.
When we let the problem instance be a terrain rather than a polygon, we obtain
the following background, which is the practical motivation for the theoretical
study of our problem: A real estate agency owns a large, uninhabited piece of
land in a beautiful area. The agency plans to sell the land in individual pieces
to people who would like to have a cabin in the wilderness, which to them
means that they do not see any signs of human civilization from their cabins.
Specifically, they do not want to see any other cabins. The real estate agency, in
order to maximize profit, wants to sell as many pieces of land as possible.

In an abstract version of the problem we are given a terrain which represents
the uninhabited piece of land that the real estate agency owns. A terrain T is a
two-dimensional surface in three-dimensional space, represented as a finite set of
vertices in the plane, together with a triangulation of their planar convex hull,
and a height value associated with each vertex. By a linear interpolation inbet-
ween the vertices, this representation defines a bivariate continuous function.
The corresponding surface in space is also called a 2.5-dimensional terrain. A
terrain divides three-dimensional space into two subspaces, i.e. a space above and
a space below the terrain, in the obvious way. In the literature, a terrain is also
called a triangulated irregular network (TIN), see [8]. The problem now consists
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of finding a maximum number of lots (of comparatively small size) in the terrain,
upon which three-dimensional bounding boxes can be positioned that represent
the cabins such that no two points of two different bounding boxes see each
other. Two points see each other, if the straight line segment connecting the two
points does not intersect the space below the terrain. Since the bounding boxes
that represent the cabins are small compared to the overall size and elevation
changes in the terrain (assume that we have a mountainous terrain), we may
consider these bounding boxes to be zero-dimensional, i.e. to be points on the
terrain. This problem has other potential applications in animated computer-
games, where a player needs to find and collect or destroy as many objects as
possible. Not seeing the next object while collecting an object makes the game
more interesting. We are now ready to formally define the first problem that we
study:

Definition 1. The problem Maximum Hidden Set on Terrain asks for a
set S of maximum cardinality of points on a given terrain T , such that no two
points in S see each other.

In a variant of the problem, we introduce the additional restriction that these
points on the terrain must be vertices of the terrain.

Definition 2. The problem Maximum Hidden Vertex Set on Terrain asks
for a set S of maximum cardinality of vertices of a given terrain T , such that
no two vertices in S see each other.

In a more abstract variant of the same problem, we are given a simple polygon
with or without holes instead of a terrain. A simple polygon with holes in the
plane is given by its ordered sequence of vertices on the outer boundary, together
with an ordered sequence of vertices for each hole. A simple polygon without
holes in the plane is simply given by its ordered sequence of vertices on the outer
boundary. Again, we can impose the additional restriction that the points to be
hidden from each other must be vertices of the polygon. This yields the following
four problems.

Definition 3. The problem Maximum Hidden Set on Polygon with(out)
Holes asks for a set S of maximum cardinality of points in the interior or on
the boundary of a given polygon P , such that no two points in S see each other.

Definition 4. The problem Maximum Hidden Vertex Set on Polygon
with(out) Holes asks for a set S of maximum cardinality of vertices of a
given polygon P , such that no two vertices in S see each other.

Two points in the polygon see each other, if the straight line segment connecting
the two points does not intersect the exterior (and the holes) of the polygon.
In this paper, we propose a reduction from Maximum Clique to Maximum
Hidden Set on Polygon with Holes. The same reduction with minor mo-
difications will also work for Maximum Hidden Set on Terrain, Maximum
Hidden Vertex Set on Polygon with Holes, and Maximum Hidden
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Vertex Set on Terrain. Maximum Clique cannot be approximated by a
polynomial-time algorithm with a ratio of n1−ε unless coR = NP and with a
ratio of n

1
2 −ε unless NP = P for any ε > 0, where n is the number of vertices

in the graph [7]. We will show that our reduction is gap-preserving (a technique
proposed in [1]), and thus show inapproximability results for all four problems.
Maximum Clique consists of finding a maximum complete subgraph of a given
graph G, as usual.

We also propose a reduction from Maximum 5-Occurrence-2-Satisfiabi-
lity to Maximum Hidden Set on Polygon without Holes, which will also
work for Maximum Hidden Vertex Set on Polygon without Holes. Ma-
ximum 5-Occurrence-2-Satisfiability is APX-hard, which is equivalent to
saying that there exists a constant ε > 0 such that no polynomial algorithm
can achieve an approximation ratio of 1 + ε for Maximum 5-Occurrence-2-
Satisfiability. See [3] for an introduction to the class APX and for the relati-
onship between the two classes APX and MaxSNP , see [11] for the MaxSNP -
hardness proof for Maximum 5-Occurrence-2-Satisfiability. Please note
that MaxSNP -hardness implies APX-hardness [3]. We show that our reduction
is gap-preserving and thus establish the APX-hardness of Maximum Hidden
(Vertex) Set on Polygon without Holes. Maximum 5-Occurrence-
2-Satisfiability consists of finding a truth assignment for the variables of a
given boolean formula. The formula consists of disjunctive clauses with at most
two literals and each variable appears in at most 5 literals. The truth assigment
must satisfy a maximum number of clauses.

There are various problems that deal with terrains. Quite often, these pro-
blems have applications in the field of telecommunications, namely in setting up
communications networks. There are some upper and lower bound results on the
number of guards needed for several kinds of guards to collectively cover all of
a given terrain [2]. Very few results on the computational complexity of terrain
problems are known. The shortest watchtower (from where a terrain can be seen
in its entirety) can be computed in time O(n log n) [15]. The problem of finding a
minimum number of vertices of a terrain such that guards at these vertices see all
of the terrain is NP -hard and cannot be approximated with an approximation
ratio that is better than logarithmic in the number of vertices of the terrain.
Similar results hold for the variation, where guards may only be placed at a
certain given height above the terrain [5]. When we deal with polygons rather
than terrains, we speak of art gallery or visibility problems. Many results (upper
and lower bounds, as well as computational complexity results) are known for
visibility problems. See [10,13,14] for an overview, as well as more recent work
on the inapproximability of Vertex/Edge/Point Guard on polygons with
[4] and without holes [6].

The problems Maximum Hidden Set on a Polygon without Holes
and Maximum Hidden Vertex Set on a Polygon without Holes are
known to be NP -hard [12]. This immediately implies the NP -hardness of the
corresponding problems for polygons with holes. A quite simple reduction from
these polygon problems to the terrain problems (as given in Sect. 3) even implies
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Fig. 1. Example graph and the polygon constructed from it

the NP -hardness for the two terrain problems as well. In this paper, we give the
first inapproximability results for these problems. Our results suggest that these
problems differ significantly in their approximation properties.

This paper is organized as follows. In Sect. 2, we propose a reduction from
Maximum Clique to Maximum Hidden Set on Polygon with Holes.
We show that our reduction is gap-preserving and obtain our inapproximability
results for Maximum Hidden (Vertex) Set on a Polygon with Holes.
We show that our proofs also work for Maximum Hidden (Vertex) Set on
Terrain with minor modifications in Sect. 3. In Sect. 4, we show the APX-
hardness of Maximum Hidden (Vertex) Set on Polygon without Holes.
Finally, we draw some conclusions in Sect. 5.

2 Inapproximability Results for the Problems for
Polygons with Holes

Suppose we are given an instance I of Maximum Clique, i.e. an undirected
graph G = (V, E), where V = v0, . . . , vn−1. Let m := |E|. We construct an
instance I ′ of Maximum Hidden Set on Polygon with Holes as follows.
I ′ consists of a polygon with holes. The polygon is basically a regular 2n-gon
with holes, but we replace every other vertex by a comb-like structure. Each
hole is a small triangle designed to block the view of two combs from each other,
whenever the two vertices, to which the combs correspond, are connected by an
edge in the graph. Figure 1 shows an example of a graph and the corresponding
polygon with holes. (Note that only the solid lines are lines of the polygon and
also note that the combs are not shown in Fig. 1.)

Let the regular 2n-gon consist of vertices v0, v
′
0, . . . , vn−1, v

′
n−1 in counter-

clockwise order, to indicate that we map each vertex vi ∈ V in the graph to
a vertex vi in the polygon. We need some notation, first. Let ei,j denote the
intersection point of the line segment from v′

i−1 to v′
i with the line segment from

vi to vj , as indicated in Fig. 2. (Note that we make liberal use of the notation
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index for the vertices, i.e. vi+1 is strictly speaking vi+1 mod n, accordingly for
vi−1.) Let d denote the minimum of the distances of ei,j from ei,j+1, where the
minimum is taken over all i, j = 1, . . . , n. Let e−

i,j (e+
i,j) denote the point at di-

stance d
3 from ei,j on the line from v′

i−1 to v′
i that is closer to v′

i−1 (v′
i). Let mi

be the midpoint of the line segment from vertex vi to vi+1 and let m′
i be the

intersection point of the line from v′
i to mi and from e+

i,i+1 to e−
i+1,i (see Fig. 2).

Finally, let eT
i,j denote the intersection point of the line from e−

i,j to m′
i and the

line from e+
i,j to m′

i−1. The detailed construction of these points is shown in Fig.
2. We let the triangle formed by the three vertices e+

i,j , e−
i,j , and eT

i,j be a hole
in the polygon iff there exists an edge in G from vi to vj . Recall Fig. 1, which
gives an example.

We now refine the polygon obtained so far by cutting off a small portion at
each vertex vi. For each i ∈ {0, . . . , n}, we introduce two new vertices vi,0 and
vi,n2+1 as indicated in Fig. 2. Vertex vi,0 is defined as the intersection point of
the line that is parallel to the line from vi−1 to vi and goes through point e+

i,i−1
and of the line from vi to v′

i. Symmetrically, vertex vi,n2+1 is defined as the
intersection point of the line that is parallel to the line from vi+1 to vi and that
goes through point e−

i,i+1 and of the line from vi to v′
i−1. We fix n2 −1 additional

vertices vi,1, . . . , vi,n2 on the line segment from vi,0 to vi,n2+1 for each i as shown
in Fig. 3. For a fixed i, the two vertices vi,l and vi,l+1 have equal distance for
all l ∈ {0, . . . , n2}. Finally, we fix n2 additional vertices wi,l for l ∈ {0, . . . , n2}
for each i. Vertex wi,l is defined as the intersection point of the line from vertex
v′

i−1 through vi,l with the line from vertex vertex v′
i through vi,l+1. The polygon

between two vertices v′
i−1 and v′

i is now given by the following ordered sequence
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of vertices: v′
i−1, vi,0, wi,0, vi,1, wi,1, . . . , vi,n2 , wi,n2 , vi,n2+1, v

′
i as indicated in Fig.

3. We call the set of all triangles vi,l, wi,l, vi,l+1 for a fixed i and all l ∈ {0, . . . , n2}
the comb of vi. We have the following property of the construction.

Lemma 1. In any feasible solution S′ of the Maximum Hidden Set on Po-
lygon with Holes instance I ′, at most 2n points in S can be placed outside
the combs.

Proof. In each of the n trapezoids {v′
i−1, v

′
i, vi,n2+1, vi,0} (see Figs. 1 and 2),

there can be at most one point, which gives n points in total. Moreover, by our
construction any point p in the trapezoid {v′

i−1, v
′
i, m

′
i, m

′
i−1} (not in the holes)

can see every point p′ in the n-gon {v′
0, . . . , v

′
n} except for points p′ in any of

the holes and (possibly) except for points p′ in the triangles {v′
i−1, m

′
i−1, e

+
i−1,i}

and {v′
i, m

′
i, e

−
i+1,i} (see Fig. 2). Therefore, all points in S′ that lie in the n-gon

{v′
0, . . . , v

′
n} must lie in only one of the n polygons {e+

i−1,i, m
′
i−1, m

′
i, e

−
i+1,i, v

′
i, v

′
i−1}.

Obviously, at most n points can be hidden in any one of these polygons. ut

We have the following observation, which follows directly from the construc-
tion:

Observation 1 Any point in the comb of vi completely sees the comb of vertex
vj, if (vi, vj) is not an edge in the graph. If (vi, vj) is an edge in the graph, then
no point in the comb of vi sees any point in the comb of vj

Given a feasible solution S′ of the Maximum Hidden Set on Polygon with
Holes instance I ′, we obtain a feasible solution S of the Maximum Clique
instance I as follows: A vertex vi ∈ V is in the solution S, iff at least one point
from S′ lies in the comb of vi. To see that S is a feasible solution, assume by
contradiction that it is not a feasible solution. Then, there exists a pair of vertices
vi, vj ∈ S with no edge between them. But then, there is by construction no hole
in the polygon to block the view between the comb of vi and the comb of vi.

We need to show that the construction of I ′ can be done in polynomial
time and that a feasible solution can be transformed in polynomial time. There
are 2n2 + 1 vertices in each of the n combs. We have additional n vertices v′

i.
There are 2 holes for each edge in the graph and each hole consists of 3 vertices.
Therefore, the polygon P consists of 6m + 2n3 + 2n vertices. It is known in
computational geometry that the coordinates of intersection points of lines with
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rational coefficients can be expressed with polynomial length. All of the points
in our construction are of this type. Therefore, the construction is polynomial.
The transformation of a feasible solution can obviously be done in polynomial
time.

We obtain our inapproximability result by using the technique of gap-preserv-
ing reductions (as introduced in [1]), which consists of transforming a promise
problem into another promise problem.

Lemma 2. Let OPT denote the size of an optimum solution of the Maximum
Clique instance I, let OPT ′ denote the size of an optimum solution of the
Maximum Hidden Set on Polygon with Holes instance I ′, and let k ≤ n.
The following holds: OPT ≥ k =⇒ OPT ′ ≥ n2k

Proof. If OPT ≥ k, then there exists a clique in I of size k. We obtain a solution
for I ′ of size n2k by simply letting the n2 vertices wi,l for l ∈ {0, . . . , n2} be
in the solution if and only if vertex vi ∈ V is in the clique. The solution thus
obtained for I ′ is feasible (see Observation 1). ut

Lemma 3. Let OPT denote the size of an optimum solution of the Maximum
Clique instance I, let OPT ′ denote the size of an optimum solution of the
Maximum Hidden Set on Polygon with Holes instance I ′, let k ≤ n, and
let ε > 0. The following holds: OPT < k

n1/2−ε =⇒ OPT ′ < n2k
n1/2−ε + 2n

Proof. We prove the contraposition: OPT ′ ≥ n2k
n1/2−ε + 2n =⇒ OPT ≥ k

n1/2−ε .
Suppose we have a solution of I ′ with n2k

n1/2−ε +2n points. At most 2n of the points
in the solution can be outside the combs, because of Lemma 1. Therefore, at least

n2k
n1/2−ε points must be in the combs. From the construction of the combs, it is clear
that at most n2 points can hide in each comb. Therefore, the number of combs

that contain at least one point from the solution is at least
n2k

n1/2−ε

n2 = k
n1/2−ε .

The transformation of a solution as described above yields a solution of I with
at least k

n1/2−ε vertices. ut
Lemmas 2 and 3 and the fact that |I ′| ≤ 10n2 allow us to prove our first main
result, using standard concepts of gap-preserving reductions (see [1]). The proof
easily carries over to the vertex restricted version of the problem.

Theorem 1. Maximum Hidden Set on Polygon with Holes and Maxi-
mum Hidden Vertex Set on Polygon with Holes cannot be approximated
by any polynomial time algorithm with an approximation ratio of |I′|1/6−γ

4 , where
|I ′| is the number of vertices in the polygon, and where γ > 0, unless NP = P .

3 Inapproximability Results for the Terrain Problems

Theorem 2. The problems Maximum Hidden Set on Terrain and Maxi-
mum Hidden Vertex Set on Terrain cannot be approximated by any poly-
nomial time algorithm with an approximation ratio of |I′′|1/6−γ

4 , where |I ′′| is the
number of vertices in the terrain, and where γ > 0, unless NP = P .
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Fig. 4. (a) Schematic construction, (b) Variable pattern

Proof. The proof very closely follows the lines of the proof for the inapproxima-
bility of Maximum Hidden (Vertex) Set on Polygon with Holes. We use
the same construction, but given the polygon with holes of instance I ′ we create
a terrain (i.e. instance I ′′) by simply letting all the area outside the polygon
(including the holes) have height h and by letting the area in the interior have
height 0. We add four vertices to the terrain by introducing a rectangular bo-
unding box around the regular 2n-gon. This yields a terrain with vertical walls,
which can be easily modified to have steep but not vertical walls, as required by
the definition of a terrain. Finally, we triangulate the terrain. The terrain thus
obtained looks like a canyon of a type that can be found in the south-west of
the United States. All proofs work very similar. ut

4 Inapproximability Results for the Problems for
Polygons Without Holes

We reduce Maximum 5-Occurrence-2-Satisfiability to Maximum Hid-
den Set on Polygon without Holes to prove the APX-hardness of Ma-
ximum Hidden Set on Polygon without Holes. The same reduction will
also work for Maximum Hidden Vertex Set on Polygon without Holes
with minor modifications. Suppose we are given an instance I of Maximum 5-
Occurrence-2-Satisfiability, which consists of n variables x0, . . . , xn−1 and
m clauses c0, . . . , cm−1. We construct a polygon without holes, i.e. an instance
I ′ of Maximum Hidden Set on Polygon without Holes, which consists
of clause patterns and variable patterns, as shown schematically in Fig. 4 (a).
The construction uses concepts similar to those used in [9]. The details of the
construction are similar to a construction in [6], and will therefore be omitted. It
is, however, necessary to introduce the variable pattern. We construct a variable
pattern for each variable xi as indicated in Fig. 4 (b). The cone-like feature drawn
with dashed lines simply helps in the construction and is not part of the polygon
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Fig. 5. Clause Pattern with cones

boundary. It represent the link to the clause patterns, as indicated in Fig. 5.
Each variable pattern consists of a TRUE- and a FALSE-leg. The reduction has
the following properties:

Lemma 4. If there exists a truth assignment S to the variables of I that satisfies
at least (1 − ε)m clauses, then there exists a solution S′ of I ′ with |S′| ≥ 10n +
2m + (1 − ε)m.

Proof. If variable xi is TRUE in S, then we let the vertices f1, . . . , f5 and w of
the TRUE-leg of xi, as well as the vertices v1, v2, v3 and w of the FALSE-leg of
xi be in the solution S′. Vice-versa if xi is FALSE in S. This gives us 10n points
in S′. The remaining points for S′ are in the clause patterns. Figure 5 shows the
clause pattern for a clause xi,¬xj

1, together with the cones that link the clause
pattern to the corresponding variable patterns. Remember that these cones are
not part of the polygon boundary. To understand Fig. 5, assume xi is assigned
the value FALSE and xj is assigned the value TRUE, i.e., the clause xi,¬xj is
not satisfied. Then there is a point in the solution that sits at vertex fk (for some
k) in the FALSE-leg of xi and a point that sits at vertex f ′

k (for some k′) in
the TRUE-leg of xj . In this case, we can have only two additional points in the
solution S′ at points ©1 , ©6 . In the remaining three cases, where the variables
xi and xj are assigned truth values such that the clause is satisfied, we can have
three additional points in S′ at ©1 – ©6 . Therefore, we have 2 points from all
unsatisfied clauses and 3 points from all satisfied clauses, i.e. 2εm + 3(1 − ε)m
points that are hidden in the clause patterns. Thus, |S′| ≥ 10n+2m+(1− ε)m,
as claimed.2 ut

Lemma 5. If there exists a solution S′ of I ′ with |S′| ≥ 10n + 3m − (ε + γ)m,
then there exists a variable assignment S of I that satisfies at least (1 − ε − γ)m
clauses.

Proof. For any solution S′, we can assume that in each leg of each variable
pattern, all points in S′ are either in the triangles of vertices f1, . . . , f5 and w,
1 The proofs work accordingly for other types of clauses, such as xi, xj .
2 Note that a point at some vertex fk actually sees a slightly larger cone than indicated

in Fig. 5. This problem can be dealt with by making the triangle of fk very small.
Corresponding methods are used to solve similar problems in [6] and [4].
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or in the triangles of vertices v1, v2, v3, and w (see Fig. 4 (b) for the definition of
these triangles), since any point in any triangle of f1, . . . , f5 sees the triangles of
v1, v2, v3 completely and any single point in the leg outside these triangles would
see almost all (at least 3) of these triangles, and we could obtain better solutions
easily. We transform the solution S′ (with |S′| ≥ 10n+3m− (ε+γ)m) in such a
way that it remains feasible and that its size (i.e. the number of hidden points)
does not decrease. This is done with an enumeration of all possible cases, i.e.
we show how to transform the solution if there is a point in 3, 4, or 5 of the
triangles of the points f1, . . . , f5 in the TRUE-leg and the FALSE-leg of a variable
pattern. The transformation is such that at the end, we have for each variable
pattern the six points at f1, . . . , f5, and w from one leg in the solution and the
4 points v1, v2, v3, and w from the other leg. Thus, we can easily obtain a truth
assignment for the variables by letting variable xi be TRUE iff the six points
at f1, . . . , f5, and w from the TRUE-leg are in the solution. The transformed
solution S′ consists of at least 10n + 3m − (ε + γ)m points, 10n of which lie in
the variable patterns. At most 3 points can lie in each clause pattern. If 3 points
lie in a clause pattern, then this clause is satisfied. Therefore, if 2 points lie in
each clause pattern, there are still at least (1 − ε − γ)m additional points in S′.
These must lie in clause patterns as well. Therefore, at least (1− ε−γ)m clauses
are satisfied. ut
Lemmas 4 and 5 show how to transform two promise problems into one another.
By using standard concepts of gap-preserving reductions and by introducing
some minor modification for the vertex-restricted problem, we obtain:

Theorem 3. Maximum Hidden (Vertex) Set on Polygon without Ho-
les is APX-hard, i.e. there exists a constant δ > 0 for each of the two pro-
blems such that no polynomial time approximation algorithm for the problem
can achieve an approximation ratio of 1 + δ, unless P = NP .

5 Conclusion

We have shown that the problems Maximum Hidden (Vertex) Set on Poly-
gon with Holes and Maximum Hidden (Vertex) Set on Terrain are al-
most as hard to approximate as Maximum Clique. We could prove for all these
problems an inapproximability ratio of O(|I ′|1/3−γ), but under the assumption
that coR 6= NP , using the stronger inapproximability result for Maximum Cli-
que from [7]. Furthermore, we have shown that Maximum Hidden (Vertex)
Set on Polygon without Holes is APX-hard. Note that an approximation
algorithm for all considered problems that simply returns a single vertex achie-
ves an approximation ratio of n. Note that our proofs can easily be modified to
work as well for polygons or terrains, where no three vertices are allowed to be
collinear. We have classified the problems Maximum Hidden (Vertex) Set
on Polygon with Holes and Maximum Hidden (Vertex) Set on Ter-
rain to belong to the class of problems inapproximable with an approximation
ratio of nε for some ε > 0, as defined in [1]. The APX-hardness results for
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the problems for polygons without holes, however, do not precisely characterize
the approximability characteristics of these problem. The gap between the best
(known) achievable approximation ratio (which is n) and the best inapproxima-
bility ratio is still very large for these problems and should be closed in future
research. As for other future work, we plan to consider several variations of the
problems presented. For example, we plan to try to hide non-zero-dimensional
objects.
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